One of the biggest criticisms of the Set Shaping Theory is the lack of a practical application. This is due to the difficulty of its application. In fact, to apply this technique from an experimental point of view we must use a table that defines the correspondences between two sets. However, this approach is not usable in practice, because the table has A^N elements, with A number of symbols and N length of the message to be encoded. Consequently, these tables can be implemented in a program only when A and N have a low value. Unfortunately, in these cases, there are no compression algorithms with such efficiency as to detect the improvement introduced by this method. In this article, we use a function capable of performing the transform without using the correspondence table; this allows us to apply this theory to a wide range of values of A and N. The results obtained confirm the theoretical predictions.
翻译:对《设定形状理论》的最大批评之一是缺乏实际应用。 这是因为其应用难度很大。 事实上, 要从实验的角度应用这一技术, 我们必须使用一个表格来定义两组之间的对应关系。 但是, 这种方法在实践上是行不通的, 因为表格中含有 A ⁇ N 元素, 一些符号和电文 N 长度要编码。 因此, 这些表格只能在 A 和 N 值低的情况下在一个程序内执行。 不幸的是, 在这些情况下, 没有具有检测这种方法所引入的改进效率的压缩算法。 在本条中, 我们使用一个功能, 能够在不使用对应表的情况下进行变换; 这使我们能够将这一理论应用于 A 和 N 的广泛值。 所获得的结果证实了理论预测。