Recent work has shown that offline reinforcement learning (RL) can be formulated as a sequence modeling problem (Chen et al., 2021; Janner et al., 2021) and solved via approaches similar to large-scale language modeling. However, any practical instantiation of RL also involves an online component, where policies pretrained on passive offline datasets are finetuned via taskspecific interactions with the environment. We propose Online Decision Transformers (ODT), an RL algorithm based on sequence modeling that blends offline pretraining with online finetuning in a unified framework. Our framework uses sequence-level entropy regularizers in conjunction with autoregressive modeling objectives for sample-efficient exploration and finetuning. Empirically, we show that ODT is competitive with the state-of-the-art in absolute performance on the D4RL benchmark but shows much more significant gains during the finetuning procedure.


翻译:最近的工作表明,离线强化学习(RL)可以作为一个序列建模问题来制定(Chen等人,2021年;Janner等人,2021年),并通过类似于大规模语言建模的办法加以解决,然而,任何实际的RL即时化还涉及一个在线部分,通过与环境的具体任务互动,对被动离线数据集预先培训的政策进行微调。我们建议在线决定变换器(ODT)是一种基于序列建模的RL算法,它将离线前训练与在线微调混合在一起,在一个统一的框架内,我们的框架使用序列级的诱导调节器与自动递增式建模目标相结合,用于抽样高效的勘探和微调。我们很生动地表明,ODT在D在D4RL基准绝对性表现方面与最新水平相比具有竞争力,但在微调程序期间显示出更大的收益。

4
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
310+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
20+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
17+阅读 · 2021年3月29日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
310+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
17+阅读 · 2021年3月29日
相关基金
国家自然科学基金
20+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员