Learning representations of stochastic processes is an emerging problem in machine learning with applications from meta-learning to physical object models to time series. Typical methods rely on exact reconstruction of observations, but this approach breaks down as observations become high-dimensional or noise distributions become complex. To address this, we propose a unifying framework for learning contrastive representations of stochastic processes (CRESP) that does away with exact reconstruction. We dissect potential use cases for stochastic process representations, and propose methods that accommodate each. Empirically, we show that our methods are effective for learning representations of periodic functions, 3D objects and dynamical processes. Our methods tolerate noisy high-dimensional observations better than traditional approaches, and the learned representations transfer to a range of downstream tasks.


翻译:在从元学习到物理物体模型到时间序列的应用中,机器学习过程的学习表现是一个新出现的问题。典型的方法依赖于精确的观测重建,但随着观测变得高维或噪音分布变得复杂,这一方法会分解。为了解决这个问题,我们提议了一个统一框架,用于学习与精确重建相去甚远的随机过程(CRESP)的对比性表现。我们分解了随机过程表现的潜在使用案例,并提出了适合每个案例的方法。我们很生动地表明,我们的方法对于学习定期功能、3D物体和动态过程的表述是有效的。我们的方法比传统方法更能容忍吵闹的高维度观察,而我们学到的表述则转移到一系列下游任务。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
93+阅读 · 2021年7月2日
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
0+阅读 · 2021年8月17日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
31+阅读 · 2020年9月21日
Contrastive Representation Distillation
Arxiv
5+阅读 · 2019年10月23日
VIP会员
相关VIP内容
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
93+阅读 · 2021年7月2日
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年8月18日
Arxiv
0+阅读 · 2021年8月17日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
31+阅读 · 2020年9月21日
Contrastive Representation Distillation
Arxiv
5+阅读 · 2019年10月23日
Top
微信扫码咨询专知VIP会员