Learning representations of stochastic processes is an emerging problem in machine learning with applications from meta-learning to physical object models to time series. Typical methods rely on exact reconstruction of observations, but this approach breaks down as observations become high-dimensional or noise distributions become complex. To address this, we propose a unifying framework for learning contrastive representations of stochastic processes (CRESP) that does away with exact reconstruction. We dissect potential use cases for stochastic process representations, and propose methods that accommodate each. Empirically, we show that our methods are effective for learning representations of periodic functions, 3D objects and dynamical processes. Our methods tolerate noisy high-dimensional observations better than traditional approaches, and the learned representations transfer to a range of downstream tasks.
翻译:在从元学习到物理物体模型到时间序列的应用中,机器学习过程的学习表现是一个新出现的问题。典型的方法依赖于精确的观测重建,但随着观测变得高维或噪音分布变得复杂,这一方法会分解。为了解决这个问题,我们提议了一个统一框架,用于学习与精确重建相去甚远的随机过程(CRESP)的对比性表现。我们分解了随机过程表现的潜在使用案例,并提出了适合每个案例的方法。我们很生动地表明,我们的方法对于学习定期功能、3D物体和动态过程的表述是有效的。我们的方法比传统方法更能容忍吵闹的高维度观察,而我们学到的表述则转移到一系列下游任务。