This paper describes a new algorithm for computing a low-Tucker-rank approximation of a tensor. The method applies a randomized linear map to the tensor to obtain a sketch that captures the important directions within each mode, as well as the interactions among the modes. The sketch can be extracted from streaming or distributed data or with a single pass over the tensor, and it uses storage proportional to the degrees of freedom in the output Tucker approximation. The algorithm does not require a second pass over the tensor, although it can exploit another view to compute a superior approximation. The paper provides a rigorous theoretical guarantee on the approximation error. Extensive numerical experiments show that that the algorithm produces useful results that improve on the state of the art for streaming Tucker decomposition.
翻译:本文描述一种用于计算高压低塔克排序近似值的新算法。 该方法对高压适用随机线性图, 以获得一张能够捕捉每种模式中的重要方向以及模式之间相互作用的草图。 草图可以从流流数据或分布数据中提取, 或者通过单次传送, 并使用与输出塔克近似值自由度成比例的存储。 该算法不需要在振幅上再过一分, 尽管它可以利用另一个视图来计算高压近似值。 该文件为近似误差提供了严格的理论保证。 广泛的数字实验显示, 算法产生了有用的结果, 改善了塔克分解的艺术状态 。