`scores` is a Python package containing mathematical functions for the verification, evaluation and optimisation of forecasts, predictions or models. It primarily supports the geoscience communities; in particular, the meteorological, climatological and oceanographic communities. In addition to supporting the Earth system science communities, it also has wide potential application in machine learning and other domains such as economics. `scores` not only includes common scores (e.g. Mean Absolute Error), it also includes novel scores not commonly found elsewhere (e.g. FIxed Risk Multicategorical (FIRM) score, Flip-Flop Index), complex scores (e.g. threshold-weighted continuous ranked probability score), and statistical tests (such as the Diebold Mariano test). It also contains isotonic regression which is becoming an increasingly important tool in forecast verification and can be used to generate stable reliability diagrams. Additionally, it provides pre-processing tools for preparing data for scores in a variety of formats including cumulative distribution functions (CDF). At the time of writing, `scores` includes over 50 metrics, statistical techniques and data processing tools. All of the scores and statistical techniques in this package have undergone a thorough scientific and software review. Every score has a companion Jupyter Notebook tutorial that demonstrates its use in practice. `scores` primarily supports `xarray` datatypes for Earth system data, allowing it to work with NetCDF4, HDF5, Zarr and GRIB data sources among others. `scores` uses Dask for scaling and performance. It has expanding support for `pandas`. The software repository can be found at https://github.com/nci/scores/
翻译:暂无翻译