We investigate the impact of choosing regressors and molecular representations for the construction of fast machine learning (ML) models of thirteen electronic ground-state properties of organic molecules. The performance of each regressor/representation/property combination is assessed using learning curves which report out-of-sample errors as a function of training set size with up to $\sim$117k distinct molecules. Molecular structures and properties at hybrid density functional theory (DFT) level of theory used for training and testing come from the QM9 database [Ramakrishnan et al, {\em Scientific Data} {\bf 1} 140022 (2014)] and include dipole moment, polarizability, HOMO/LUMO energies and gap, electronic spatial extent, zero point vibrational energy, enthalpies and free energies of atomization, heat capacity and the highest fundamental vibrational frequency. Various representations from the literature have been studied (Coulomb matrix, bag of bonds, BAML and ECFP4, molecular graphs (MG)), as well as newly developed distribution based variants including histograms of distances (HD), and angles (HDA/MARAD), and dihedrals (HDAD). Regressors include linear models (Bayesian ridge regression (BR) and linear regression with elastic net regularization (EN)), random forest (RF), kernel ridge regression (KRR) and two types of neural net works, graph convolutions (GC) and gated graph networks (GG). We present numerical evidence that ML model predictions deviate from DFT less than DFT deviates from experiment for all properties. Furthermore, our out-of-sample prediction errors with respect to hybrid DFT reference are on par with, or close to, chemical accuracy. Our findings suggest that ML models could be more accurate than hybrid DFT if explicitly electron correlated quantum (or experimental) data was available.


翻译:我们调查了在构建13个有机分子电子地面状态特性的快速机器学习模型时选择递增器和分子表示法的影响。每个递减/代表/财产组合的性能都使用学习曲线进行评估,该曲线报告出样错误,作为培训设置规模的函数,最高为$sim 117k不同的分子。在混合密度功能理论(DFT)水平上,分子结构和特性用于培训和测试的理论来自QM9数据库[Ramakrishnan, Excial Data}, bf scial data 1} 140022(2014)],其中包括dipoole 时刻、极易变、HOM/LUMOO能量和差距、电子空间范围、零点振动能量、热容量和最基本振动频率。研究了各种文献表达法(Coulombmetrom、债券袋、BAML和ECF4分子图(MG),以及两个新开发的以内部货币递增量(Oral-ral-ral oral),包括OD-ral 直径直径直径、直径、直径、直径、直径、直径、直径、直径、直径、直径、直径、直径、直径、直径、直径、直径、直、直、直、直、直方、直径、直径、直方、直、直、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、直方、

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
162+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
机器学习的Pytorch实现资源集合
专知
11+阅读 · 2018年9月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
机器学习的Pytorch实现资源集合
专知
11+阅读 · 2018年9月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员