Our recent research shows that the design philosophy of human factors research in the intelligence age is expanding from "user-centered design" to "user-centered design 2.0" and "human-centered AI", and the human-machine relationship presents a trans-era evolution from "human-machine interaction" to "human-machine teaming". These changes have raised new questions and challenges for human factors research, compelling us to re-examine the paradigm and agenda of human factors research that was traditionally based on non-intelligent technologies. In this context, this paper reviews the cross-generational expansion of the human factors research paradigm and summarizes the new conceptual models and frameworks we proposed to enrich the human factors research paradigm, including a human-agent teaming model, a human-agent joint cognitive ecosystem framework, and an intelligent sociotechnical systems framework. This paper further enhances these concepts and looks forward to the corresponding application of these concepts and future research agenda. This paper also looks forward to the future agenda of human factors research from three aspects: "human-AI interaction", "intelligent human-machine interface", and "human-machine teaming". It analyzes the role of human factors research paradigms on future research agendas. We believe that the research paradigms and the research agenda influence and promote each other. Human factors research in the intelligence age needs diversified and innovative research paradigms, thereby further promoting the development of human factors science.


翻译:我们最近的研究显示,人类因素研究在情报时代的设计理念正在从“以用户为中心的设计”到“以用户为中心的设计2.0”和“以人为中心的人工智能”的扩展,而人与机器的关系呈现了从“人与机器的互动”到“人与机器团队”的跨时代演变。这些变化为人类因素研究提出了新的问题和挑战,迫使我们重新审视传统上以非智能技术为基础的人类因素研究的范式和议程。在此背景下,本文件审查了人类因素研究范式的跨代扩展,并总结了我们为丰富人类因素研究范式而提议的新概念模型和框架,包括人与代理人的团队模式、人与代理人的联合认知生态系统框架以及智能的社会技术系统框架。本文件进一步强化了这些概念,并期待着这些概念和未来研究议程的相应应用。本文还从三个方面展望人类因素研究的未来议程:人类-AI互动、智能的人类机器界面界面、以及“人与机器团队” 。它分析了人类因素研究模式的作用,从而推动了人类因素研究的每个研究模式以及未来研究议程的多样化影响。我们相信人类研究议程和人类研究议程中的每一项研究议程。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2022年2月15日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
35+阅读 · 2021年8月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员