Recent interest in exploiting Deep Learning techniques for Noise Suppression, has led to the creation of Hybrid Denoising Systems that combine classic Signal Processing with Deep Learning. In this paper, we concentrated our efforts on extending the RNNoise denoising system (arXiv:1709.08243) with the inclusion of complementary features during the training phase. We present a comprehensive explanation of the set-up process of a modified system and present the comparative results derived from a performance evaluation analysis, using a reference version of RNNoise as control.


翻译:最近人们有兴趣利用深学习技术来抑制噪音,因此建立了混合代议制系统,将传统信号处理与深学习相结合,在本文件中,我们集中努力扩大RNNUISE的脱氮系统(arXiv:1709.08243),在培训阶段纳入互补功能,我们用RNNOUSE的参考版本作为对照,对修改后的系统的设置过程作了全面解释,并介绍了从业绩评价分析中获得的比较结果。

0
下载
关闭预览

相关内容

语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术。一句话,从含噪语音中提取尽可能纯净的原始语音。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Arxiv
14+阅读 · 2021年6月30日
Phase-aware Speech Enhancement with Deep Complex U-Net
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
Top
微信扫码咨询专知VIP会员