A model for tokamak discharge through deep learning has been done on a superconducting long-pulse tokamak (EAST). This model can use the control signals (i.e. Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), etc) to model normal discharge without the need for doing real experiments. By using the data-driven methodology, we exploit the temporal sequence of control signals for a large set of EAST discharges to develop a deep learning model for modeling discharge diagnostic signals, such as electron density $n_{e}$, store energy $W_{mhd}$ and loop voltage $V_{loop}$. Comparing the similar methodology, we use Machine Learning techniques to develop the data-driven model for discharge modeling rather than disruption prediction. Up to 95% similarity was achieved for $W_{mhd}$. The first try showed promising results for modeling of tokamak discharge by using the data-driven methodology. The data-driven methodology provides an alternative to physical-driven modeling for tokamak discharge modeling.
翻译:通过深层学习,对超导长脉冲托卡马克排放做了一种模型。该模型可以使用控制信号(即中比射入(NBI)、Ion Cyclotron共振热(ICRH)等)来模拟正常排放,而不需要做真正的实验。我们利用数据驱动方法,利用大量东欧排放控制信号的时间序列来开发一个用于模拟排放诊断信号的深层学习模型,例如电子密度$N ⁇ e}、存储能量$W ⁇ mhd}美元和环压 $V ⁇ loop}美元。比较类似方法,我们使用机器学习技术来开发数据驱动模型用于排放模型而不是干扰预测。通过使用数据驱动方法,我们实现了高达95%的类似值。第一次尝试显示了通过数据驱动方法模拟托卡马克排放的有希望的结果。数据驱动方法提供了用于托卡马克排放模型的替代物理驱动模型。