Opportunities such as higher education can promote intergenerational mobility, leading individuals to achieve levels of socioeconomic status above that of their parents. We develop a dynamic model for allocating such opportunities in a society that exhibits bottlenecks in mobility; the problem of optimal allocation reflects a trade-off between the benefits conferred by the opportunities in the current generation and the potential to elevate the socioeconomic status of recipients, shaping the composition of future generations in ways that can benefit further from the opportunities. We show how optimal allocations in our model arise as solutions to continuous optimization problems over multiple generations, and we find in general that these optimal solutions can favor recipients of low socioeconomic status over slightly higher-performing individuals of high socioeconomic status -- a form of socioeconomic affirmative action that the society in our model discovers in the pursuit of purely payoff-maximizing goals. We characterize how the structure of the model can lead to either temporary or persistent affirmative action, and we consider extensions of the model with more complex processes modulating the movement between different levels of socioeconomic status.


翻译:高等教育等机会可以促进代际流动性,引导个人达到比父母更高的社会经济地位水平。我们制定了一个动态模式,在流动性存在瓶颈的社会分配此类机会;最佳分配问题反映了当代机会所带来的惠益与提高接受者社会经济地位的潜力之间的权衡,从而以能够进一步从机会中获益的方式塑造后代的构成。我们展示了我们模式中的最佳分配方式是如何产生出解决多代人持续优化问题的解决方案,我们总体上发现,这些最佳解决方案有利于社会经济地位低下的受惠者,而不是表现稍高的社会经济地位个人 -- -- 一种社会经济平等权利行动形式,我们模式中的社会在追求纯报酬最大化目标时发现了这种形式。我们描述模式的结构如何导致临时或持续扶持行动,我们考虑以更复杂的进程扩大模式,调整不同社会经济地位之间的移动。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
专知会员服务
45+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
论文浅尝 | EARL: Joint Entity and Relation Linking for QA over KG
开放知识图谱
6+阅读 · 2018年10月30日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月17日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
论文浅尝 | EARL: Joint Entity and Relation Linking for QA over KG
开放知识图谱
6+阅读 · 2018年10月30日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员