This paper extends quantum information theory into the algorithmic sphere, using randomness and information conservation inequalities. We show for an overwhelming majority of pure states, the self classical algorithmic information induced by a measurement will be negligible. Purification of two states increases information. A vast majority of pure states will decohere into random noise.


翻译:本文将量子信息理论扩展到算法领域,使用随机性和信息保护不平等。 对于绝大多数的纯国家来说,我们展示了测量引领的自古典算法信息是微不足道的。 两个国家的纯化增加了信息。 绝大多数纯国将分解为随机噪音。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
耶鲁大学《分布式系统理论》笔记,491页pdf
专知会员服务
44+阅读 · 2020年7月29日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
MIT线性代数(Linear Algebra)中文笔记
专知
51+阅读 · 2019年11月4日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年11月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月8日
Arxiv
0+阅读 · 2021年5月8日
Arxiv
0+阅读 · 2021年5月8日
Arxiv
0+阅读 · 2021年5月6日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
0+阅读 · 2021年5月4日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
耶鲁大学《分布式系统理论》笔记,491页pdf
专知会员服务
44+阅读 · 2020年7月29日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
MIT线性代数(Linear Algebra)中文笔记
专知
51+阅读 · 2019年11月4日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年11月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
相关论文
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月8日
Arxiv
0+阅读 · 2021年5月8日
Arxiv
0+阅读 · 2021年5月8日
Arxiv
0+阅读 · 2021年5月6日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
0+阅读 · 2021年5月4日
Top
微信扫码咨询专知VIP会员