This paper introduces and describes the R package ts.extend, which adds probability functions for stationary Gaussian ARMA models and some related utility functions for time-series. We show how to use the package to compute the density and distributions functions for models in this class, and generate random vectors from this model. The package allows the user to use marginal or conditional models using a simple syntax for conditioning variables and marginalised elements. This allows users to simulate time-series vectors from any stationary Gaussian ARMA model, even if some elements are conditional values or omitted values. We also show how to use the package to compute the spectral intensity of a time-series vector and implement the permutation-spectrum test for a time-series vector to detect the presence of a periodic signal.
翻译:本文介绍并描述 R 包件 t. extend, 该包件增加了固定的 Gaussian ARMA 模型的概率函数和时间序列的某些相关实用函数。 我们展示了如何使用包件来计算该类模型的密度和分布函数, 并从此模型中生成随机矢量。 包件允许用户使用边际或有条件的模型, 使用简单的语法来调节变量和边际元素。 这样用户就可以模拟来自任何固定的 Gaussian ARMA 模型的时间序列矢量, 即使某些元素是有条件的值或省略的值。 我们还演示了如何使用包件来计算时间序列矢量的光谱强度, 并使用时间序列矢量的光谱测试来检测定期信号的存在 。