Variational autoencoder (VAE) is a very successful generative model whose key element is the so called amortized inference network, which can perform test time inference using a single feed forward pass. Unfortunately, this comes at the cost of degraded accuracy in posterior approximation, often underperforming the instance-wise variational optimization. Although the latest semi-amortized approaches mitigate the issue by performing a few variational optimization updates starting from the VAE's amortized inference output, they inherently suffer from computational overhead for inference at test time. In this paper, we address the problem in a completely different way by considering a random inference model, where we model the mean and variance functions of the variational posterior as random Gaussian processes (GP). The motivation is that the deviation of the VAE's amortized posterior distribution from the true posterior can be regarded as random noise, which allows us to take into account the uncertainty in posterior approximation in a principled manner. In particular, our model can quantify the difficulty in posterior approximation by a Gaussian variational density. Inference in our GP model is done by a single feed forward pass through the network, significantly faster than semi-amortized methods. We show that our approach attains higher test data likelihood than the state-of-the-arts on several benchmark datasets.


翻译:变异自动coder (VAE) 是一个非常成功的基因化模型, 关键元素是所谓的摊销推断网络, 它可以使用单一的种子前传路进行测试时间推断。 不幸的是, 这样做的代价是以后近光线的精度降低为代价, 往往表现不力于试样变异优化。 虽然最新的半摊销方法从VAE的摊销推断输出开始, 进行了一些变异优化更新, 从而缓解了这一问题, 但它们必然会因测试时的推断而受计算间接间接损失的影响。 在本文中, 我们用一个随机的推断模型来以完全不同的方式解决问题, 我们用随机的推断模型, 将变异光光线的平均值和变异功能作为随机高调进程(GP ) 。 其动机是, VAE 的缩放后光谱分布的偏差可被视为随机噪音, 从而使我们能够以有原则的方式考虑后对后映的不确定性。 特别是, 我们的模型可以用一个远光谱化的模型来量化远端网络的难度, 而不是通过一次测试的变速方法, 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】C++20 特性 第二版,A Problem-Solution Approach
专知会员服务
58+阅读 · 2020年4月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】C++20 特性 第二版,A Problem-Solution Approach
专知会员服务
58+阅读 · 2020年4月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员