Quadratic forms of Hermitian matrix resolvents involve the solutions of shifted linear systems. Efficient iterative solutions use the shift-invariance property of Krylov subspaces The Hermitian Lanczos method reduces a given vector and matrix to a Jacobi matrix (real symmetric tridiagonal matrix with positive super and sub-diagonal entries) and approximates the quadratic form using the Jacobi matrix. This study develops a shifted Lanczos method that deals directly with the Hermitian matrix resolvent. We derive a matrix representation of a linear operator that approximates the resolvent by solving a Vorobyev moment problem associated with the shifted Lanczos method. We show that an entry of the Jacobi matrix resolvent can approximate the quadratic form, matching the moments. We give a sufficient condition such that the method does not break down, an error bound, and error estimates. Numerical experiments on matrices drawn from real-world applications compare the proposed method with previous methods and show that the proposed method outperforms well-established methods in solving some problems.
翻译:高效迭代解决方案使用Krylov 子空间的转移性差属性 Hermitian Lanczos 方法减少了给定的矢量和向Jacobi 矩阵的矩阵(对称三对角矩阵,带有正超和亚对角条目)的矩阵,并接近使用Jacobi 矩阵的四方形。本研究开发了一种与Hermitian 矩阵固态直接打交道的移动式Lanczos 方法。我们得出一个线性操作员的矩阵表示,该操作员通过解决与被移动的兰乔斯方法相关的Vorobyev时点问题接近于该固态。我们显示,雅各布基矩阵分辨率的输入可以接近四方形,与时间相匹配。我们给出了一个充分的条件,即该方法不会破裂,错误捆绑,错误估计。从真实世界应用中提取的矩阵上的数值实验将方法与以前的方法进行比较,并表明拟议的方法在解决一些问题方面优于既定方法。