The proliferation of cloud computing has led to heightened concerns regarding the security and privacy of sensitive data, as their need to be decrypted before processing, renders them susceptible to potential breaches. Fully Homomorphic Encryption (FHE) serves as a countermeasure to this issue by enabling computation to be executed directly on encrypted data. Nevertheless, the execution of FHE is orders of magnitude slower compared to unencrypted computation, thereby impeding its practicality and adoption. Therefore, enhancing the performance of FHE is crucial for its implementation in real-world scenarios. In this study, we elaborate on our endeavors to design, implement, fabricate, and post-silicon validate a co-processor for FHE, named CoFHEE. With a compact design area of 12mm^2 , CoFHEE features ASIC implementations of fundamental polynomial operations, including polynomial addition and subtraction, Hadamard product, and Number Theoretic Transform, which underlie all higher-level FHE primitives. CoFHEE is capable of natively supporting polynomial degrees of up to n = 2^14 with a coefficient size of 128 bits, and has been fabricated and silicon-verified using 55nm CMOS technology. To evaluate it, we conduct performance and power experiments on our chip, and compare it to state-of-the-art software implementations and other ASIC designs.


翻译:云计算的扩散导致人们更加关注敏感数据的安全和隐私问题,因为这些数据在处理前需要解密,因而容易发生可能的破损。完全单调加密(FHE)通过使计算能够直接在加密数据上进行计算,成为这一问题的应对措施。然而,FHE的操作规模比未经加密的计算慢,从而妨碍其实用性和采用。因此,提高FHE的性能对于在现实世界情景中实施这一数据至关重要。在本研究中,我们详细说明了我们设计、实施、制造和后硅工作的努力,以验证称为CFHEE(FHE)的共处理器。完全单调加密(FHE)通过一个12毫米2的紧凑设计领域,作为应对该问题的一种应对措施。尽管如此,FHEE的运行比未经加密的计算要慢得多,从而阻碍了其应用。因此,提高FHAHEHE的性能对于在现实世界所有更高层次的原始情景中实施FHE的性能至关重要。CHEEE能够本地支持其多调度至n-n-naltialtial, laftal laftal laus and conviewative to nn laft laft laft laft laudal lavel lavel 和我们使用了C-caltical lt-calticaltical ex ex ex acaldaldaltius and to to to s bisalticalticalticaltical ex ex acaldaldaldaldaldaldalds ex, ex ex ex ex ex ex lautusaldaldalds and to to to to to ex etals acal ex ex ex ex ex ex ex ex ex ex lautusal lautal lautal lautaldal lautal lautal lautal lautal lautaldal lauts lauts lauts lautals lautals lautaldaldald lauts lauts lax lauts

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员