In countries where population census data are limited, generating accurate subnational estimates of health and demographic indicators is challenging. Existing model-based geostatistical methods leverage covariate information and spatial smoothing to reduce the variability of estimates but often ignore survey design, while traditional small area estimation approaches may not incorporate both unit level covariate information and spatial smoothing in a design-consistent way. We propose a smoothed model-assisted estimator that accounts for survey design and leverages both unit level covariates and spatial smoothing. Under certain assumptions, this estimator is both design-consistent and model-consistent. We compare it with existing design-based and model-based estimators using real and simulated data.
翻译:在人口普查数据有限的国家,对健康和人口指标得出准确的国家以下一级估计数具有挑战性;现有的基于模型的地理统计方法利用共同变量的信息和空间平滑来减少估计数的变异性,但往往忽视调查设计,而传统的小地区估计方法可能无法以设计一致的方式既纳入单位水平的共变量信息,也纳入空间平滑。我们提议一个平滑的模型辅助估算器,用于调查设计,并利用单位水平的共变量和空间平滑。在某些假设下,这一估算器既符合设计,又符合模型。我们用真实和模拟数据将它与现有的基于设计和基于模型的估算器进行比较。