Reasoning is an essential part of human intelligence and thus has been a long-standing goal in artificial intelligence research. With the recent success of deep learning, incorporating reasoning with deep learning systems, i.e., neuro-symbolic AI has become a major field of interest. We propose the Neuro-Symbolic Forward Reasoner (NSFR), a new approach for reasoning tasks taking advantage of differentiable forward-chaining using first-order logic. The key idea is to combine differentiable forward-chaining reasoning with object-centric (deep) learning. Differentiable forward-chaining reasoning computes logical entailments smoothly, i.e., it deduces new facts from given facts and rules in a differentiable manner. The object-centric learning approach factorizes raw inputs into representations in terms of objects. Thus, it allows us to provide a consistent framework to perform the forward-chaining inference from raw inputs. NSFR factorizes the raw inputs into the object-centric representations, converts them into probabilistic ground atoms, and finally performs differentiable forward-chaining inference using weighted rules for inference. Our comprehensive experimental evaluations on object-centric reasoning data sets, 2D Kandinsky patterns and 3D CLEVR-Hans, and a variety of tasks show the effectiveness and advantage of our approach.
翻译:理性是人类智力的一个基本部分,因此是人工智能研究的一个长期目标。随着最近深层次学习的成功,吸收了与深层次学习系统的推理,神经共振AI已经成为一个令人感兴趣的主要领域。我们建议采用神经共振前进理性(NSFR)这一新的方法来进行推理任务,利用一阶逻辑,利用不同的前链逻辑进行不同的前链逻辑。关键思想是将不同的前链推理与以物体为中心的(深)学习结合起来。不同的前链推理顺利地对逻辑要求进行了解析,也就是说,它以不同的方式从特定事实和规则中推导出新的事实。以对象为中心的学习方法将原始投入纳入物体的表述中。因此,它使我们能够提供一个一致的框架,从原始投入中进行前链导。 NSFR因素将原始投入纳入以对象中心为中心的表述,将其转换为稳定的地面,最后,以不同的方式从特定事实和规则中推导出前链,利用我们全面C-C-C-C-C-C-C-R-R-R-R-R-C-C-C-L-Sirvical survial survial survial survical survial survial survial 3 survial vivivivivialvialvial 和Cirvial sqal 3 sqalvialvivivivivivivivi) 的系统 的加权全面评估。