The diagnosis of cyber-physical systems aims to detect faulty behaviour, its root cause and a mitigation or even prevention policy. Therefore, diagnosis relies on a representation of the system's functional and faulty behaviour combined with observations of the system taken at runtime. The main challenges are the time-intensive building of a model, possible state-explosion while searching for the root cause and interpretability of the results. In this paper we propose a scalable algorithm tackling these challenges. We use a Bayesian network to learn a structured model automatically and optimise the model by a genetic algorithm. Our approach differs from existing work in two aspects: instead of selecting features prior to the analysis we learn a global representation using all available information which is then transformed to a smaller, label-specific one and we focus on interpretability to facilitate repairs. The evaluation shows that our approach is able to learn a model with equal performance to state-of-the-art algorithms while giving better interpretability and having a reduced size.
翻译:对网络物理系统的诊断旨在发现错误行为、其根源以及减缓甚至预防政策。 因此,诊断依赖于对系统功能和错误行为的描述以及系统运行时的观察。 主要的挑战是在寻找根本原因和结果解释的同时,进行时间密集的模型建设、可能的状态爆炸以及结果的可解释性。 在本文中,我们提出了应对这些挑战的可缩放算法。 我们使用巴伊西亚网络自动学习结构化模型,并通过基因算法优化模型。 我们的方法与现有工作在两个方面不同:我们不用在分析前选择特征,而是使用所有可用信息,然后转换成一个小的、针对具体标签的信息,学习一种全球代表性,我们侧重于可解释性,以便利修理。 评估表明,我们的方法能够学习一种模型,在对最新算法的同等性能,同时提供更好的解释性和缩小规模。