Since its inception, the choice modelling field has been dominated by theory-driven modelling approaches. Machine learning offers an alternative data-driven approach for modelling choice behaviour and is increasingly drawing interest in our field. Cross-pollination of machine learning models, techniques and practices could help overcome problems and limitations encountered in the current theory-driven modelling paradigm, such as subjective labour-intensive search processes for model selection, and the inability to work with text and image data. However, despite the potential benefits of using the advances of machine learning to improve choice modelling practices, the choice modelling field has been hesitant to embrace machine learning. This discussion paper aims to consolidate knowledge on the use of machine learning models, techniques and practices for choice modelling, and discuss their potential. Thereby, we hope not only to make the case that further integration of machine learning in choice modelling is beneficial, but also to further facilitate it. To this end, we clarify the similarities and differences between the two modelling paradigms; we review the use of machine learning for choice modelling; and we explore areas of opportunities for embracing machine learning models and techniques to improve our practices. To conclude this discussion paper, we put forward a set of research questions which must be addressed to better understand if and how machine learning can benefit choice modelling.


翻译:自建立以来,选择建模领域一直以理论驱动的建模方法为主。机器学习为模拟选择行为提供了一种由数据驱动的替代方法,并日益吸引对本领域的兴趣。机械学习模式、技术和做法的交叉分布有助于克服当前理论驱动的建模模式遇到的问题和限制,例如选择模式的主观劳动密集型搜索过程,以及无法与文本和图像数据合作。然而,尽管利用机器学习的进步改进选择建模做法的潜在好处,但选择建模领域却不愿接受机器学习。本讨论文件旨在巩固关于使用机器学习模型、技术和做法进行选择建模的知识,并讨论其潜力。因此,我们希望不仅证明在选择建模中进一步整合机器学习是有益的,而且还能进一步促进它。为此,我们澄清两种建模模式的相似性和差异;我们审查机器学习用于选择建模的情况;我们探索接受机器学习模型和技术来改进我们做法的机会。为完成这一讨论文件,我们提出了一套研究问题,如果能够更好地了解和学习机器如何受益,就必须研究如何进行建模。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
126+阅读 · 2020年9月6日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员