We investigate the problem of private read update write (PRUW) in relation to federated submodel learning (FSL) with storage constrained databases. In PRUW, a user privately reads a submodel from a system of $N$ databases containing $M$ submodels, updates it locally, and writes the update back to the databases without revealing the submodel index or the value of the update. The databases considered in this problem are only allowed to store a given amount of information specified by an arbitrary storage constraint. We provide a storage mechanism that determines the contents of each database prior to the application of the PRUW scheme, such that the total communication cost is minimized. We show that the proposed storage scheme achieves a lower total cost compared to what is achieved by using \emph{coded storage} or \emph{divided storage} to meet the given storage constraint.
翻译:我们调查了私人阅读更新写作(PRUW)与储存限制数据库的封存子模范学习(FSL)有关的问题。在PRUW中,一个用户私下阅读一个包含美元小模范的数据库系统的子模范,在本地进行更新,并在不透露子模范指数或更新值的情况下将更新写回数据库。在此问题上考虑的数据库只允许储存任意储存限制规定的一定数量的信息。我们提供了一个存储机制,在应用PRUW计划之前确定每个数据库的内容,从而将通信总费用降到最低。我们表明,与使用\emph{cod demtrement} 或\emph{rediction demtreal} 以满足给定的存储限制相比,拟议的存储计划总成本较低。