When an individual's behavior has rational characteristics, this may lead to irrational collective actions for the group. A wide range of organisms from animals to humans often evolve the social attribute of cooperation to meet this challenge. Therefore, cooperation among individuals is of great significance for allowing social organisms to adapt to changes in the natural environment. Based on multi-agent reinforcement learning, we propose a new learning strategy for achieving coordination by incorporating a learning rate that can balance exploration and exploitation. We demonstrate that agents that use the simple strategy improve a relatively collective return in a decision task called the intertemporal social dilemma, where the conflict between the individual and the group is particularly sharp. We also explore the effects of the diversity of learning rates on the population of reinforcement learning agents and show that agents trained in heterogeneous populations develop particularly coordinated policies relative to those trained in homogeneous populations.


翻译:当一个人的行为具有理性特点时,这可能导致该群体采取非理性的集体行动。从动物到人类的多种生物往往演变出合作应对这一挑战的社会属性。因此,个人之间的合作对于使社会有机体适应自然环境的变化具有重大意义。根据多试剂强化学习,我们提出一种新的学习战略,通过纳入能够平衡探索和剥削的学习率实现协调。我们证明,采用简单战略的代理人在被称为时际社会困境的决策任务中改善了相对集体的回报,即个人与群体之间的冲突特别尖锐。我们还探讨了学习率的多样性对强化学习主体人口的影响,并表明,接受过不同人群培训的代理人制定了与那些受过同质人口培训的人员特别协调一致的政策。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年7月27日
专知会员服务
27+阅读 · 2021年7月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Remote Contextual Bandits
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月10日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年7月27日
专知会员服务
27+阅读 · 2021年7月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员