We propose using a coordinate network decoder for the task of super-resolution in MRI. The continuous signal representation of coordinate networks enables this approach to be scale-agnostic, i.e. one can train over a continuous range of scales and subsequently query at arbitrary resolutions. Due to the difficulty of performing super-resolution on inherently noisy data, we analyze network behavior under multiple denoising strategies. Lastly we compare this method to a standard convolutional decoder using both quantitative metrics and a radiologist study implemented in Voxel, our newly developed tool for web-based evaluation of medical images.
翻译:我们建议使用协调网络解码器来完成磁共振中超分辨率的任务。 协调网络的连续信号表示使这一方法能够具有规模的不可知性, 也就是说, 可以在连续的尺度范围内进行培训, 并在任意的分辨率下进行查询。 由于在固有的噪音数据上执行超级解析的难度, 我们根据多重分解策略分析网络行为。 最后, 我们用定量指标和在Voxel(我们新开发的基于网络的医疗图像评估工具)进行的放射学家研究, 将这一方法与标准的共振解码器进行比较。