Self-Supervised Learning (SSL) methods such as VICReg, Barlow Twins or W-MSE avoid collapse of their joint embedding architectures by constraining or regularizing the covariance matrix of their projector's output. This study highlights important properties of such strategy, which we coin Variance-Covariance regularization (VCReg). More precisely, we show that VCReg enforces pairwise independence between the features of the learned representation. This result emerges by bridging VCReg applied on the projector's output to kernel independence criteria applied on the projector's input. This provides the first theoretical motivations and explanations of VCReg. We empirically validate our findings where (i) we observe that SSL methods employing VCReg learn visual representations with greater pairwise independence than other methods, (i) we put in evidence which projector's characteristics favor pairwise independence, and show it to emerge independently from learning the projector, (ii) we use these findings to obtain nontrivial performance gains for VICReg, (iii) we demonstrate that the scope of VCReg goes beyond SSL by using it to solve Independent Component Analysis. We hope that our findings will support the adoption of VCReg in SSL and beyond.
翻译:自我监督学习(SSL)方法,如VIRCReg、Barlow Twins或W-MSE等,通过限制或规范投影器输出的共变量矩阵,避免联合嵌入结构的崩溃。本研究强调了这种战略的重要特性,我们创造了差异-差异-差异性规范(VCREG)。更准确地说,我们显示VCREG在所学代表方的特征之间执行双向独立。这个结果来自对投影器输出应用到投影器输入的内核独立标准的连接VCREG。这提供了VCREG的第一个理论动机和解释。我们从经验上验证了我们的调查结果,即(一)我们观察到,使用VCREG的SL方法学习视觉表现比其他方法更加双向独立,(一)我们提供了投影器特性有利于双向独立性的证据,并表明它独立于学习投影机,(二)我们利用这些结果为VIREg获得非微量性性性性性性性性能收益。 (三)我们证明VCREG的支持范围超越了SL,我们用SL进行独立分析的希望。