A key design constraint when implementing Monte Carlo and variational inference algorithms is that it must be possible to cheaply and exactly evaluate the marginal densities of proposal distributions and variational families. This takes many interesting proposals off the table, such as those based on involved simulations or stochastic optimization. This paper broadens the design space, by presenting a framework for applying Monte Carlo and variational inference algorithms when proposal densities cannot be exactly evaluated. Our framework, recursive auxiliary-variable inference (RAVI), instead approximates the necessary densities using meta-inference: an additional layer of Monte Carlo or variational inference, that targets the proposal, rather than the model. RAVI generalizes and unifies several existing methods for inference with expressive approximating families, which we show correspond to specific choices of meta-inference algorithm, and provides new theory for analyzing their bias and variance. We illustrate RAVI's design framework and theorems by using them to analyze and improve upon Salimans et al.'s Markov Chain Variational Inference, and to design a novel sampler for Dirichlet process mixtures, achieving state-of-the-art results on a standard benchmark dataset from astronomy and on a challenging datacleaning task with Medicare hospital data.


翻译:实施 Monte Carlo 和变异推断算法的一个关键设计制约是,必须能够以廉价和准确的方式评估建议分布和变异家庭的边际密度。这需要许多令人感兴趣的建议,例如基于模拟或随机优化的建议。本文扩大了设计空间,提出了适用Monte Carlo的框架,以及在无法精确评估建议密度时采用变异推断算法。我们的框架,重复的辅助可变推断性推断(RAVI),而不是利用元推法来接近必要的密度:增加一个蒙特卡洛或变异推法层,以提案为目标,而不是模型。RAVI概括并统一了与表情相近家庭的现有推断方法,我们显示了与具体选择的元推断算法和变异性算法的相对应,并为分析其偏差和差异提供了新理论。我们用RAVI的设计框架和理论来分析并改进Salimans Markov Charil Intravely Exciational Brigulational-Climateal-Climateal-Climateal-dal-Crefirmal 数据,我们用它们分析并改进了一种具有挑战性的数据,并设计一个具有挑战性的模型的数据。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员