In this paper, we propose a general framework for designing sensing matrix $\boldsymbol{A} \in \mathbb{R}^{d\times p}$, for estimation of sparse covariance matrix from compressed measurements of the form $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{n}$, where $\boldsymbol{y}, \boldsymbol{n} \in \mathbb{R}^d$, and $\boldsymbol{x} \in \mathbb{R}^p$. By viewing covariance recovery as inference over factor graphs via message passing algorithm, ideas from coding theory, such as \textit{Density Evolution} (DE), are leveraged to construct a framework for the design of the sensing matrix. The proposed framework can handle both (1) regular sensing, i.e., equal importance is given to all entries of the covariance, and (2) preferential sensing, i.e., higher importance is given to a part of the covariance matrix. Through experiments, we show that the sensing matrix designed via density evolution can match the state-of-the-art for covariance recovery in the regular sensing paradigm and attain improved performance in the preferential sensing regime. Additionally, we study the feasibility of causal graph structure recovery using the estimated covariance matrix obtained from the compressed measurements.
翻译:在本文中,我们提出一个总体框架,用于设计smission $\boldsymbol{A}/ a} 用于估算来自 $\ boldsymbl{R ⁇ d\time p} 形式的压缩测量的稀有共变矩阵, 用于估算 $\ boldsymbol{x} +\ boldsysymbol{A}\ in\ mathbb{R ⁇ d} 和 $\ boldsymbol{x} 美元。 通过观察 cooldsymol{x} =\ boldsysymol{x} =\ boldsysymbol{A} $, $\ bathbb{R ⁇ d} 和 $\ boldsylsymol{x} $\ p} 美元。 通过电文传算算算算算算算算算算算算算算算算算算法的系数图, 等概念理论的理论, 用于构建感测矩阵设计框架的设计框架。提议的框架可以处理(1) 定期感测测, 即我们从 获取的正变法的正变和正变和正变和正变和正变和正变和正变法的轨的精确 研究,