The question to enumerate all inclusion-minimal connected dominating sets in a graph of order $n$ in time significantly less than $2^n$ is an open question that was asked in many places. We answer this question affirmatively, by providing an enumeration algorithm that runs in time $\mathcal{O}(1.9896^n)$, using polynomial space only. The key to this result is the consideration of this enumeration problem on 2-degenerate graphs, which is proven to be possible in time $\mathcal{O}(1.9767^n)$. We also show new lower bound results by constructing a family of graphs of order $n$ with $\Omega(1.4890^n)$ minimal connected dominating sets, while previous examples achieved $\Omega(1.4422^n)$. Our construction results in lower bounds for a few special graph classes. We also address essential questions concerning output-sensitive enumeration. Namely, we give reasons why our algorithm cannot be turned into an enumeration algorithm that guarantees polynomial delay without much efforts. More precisely, we prove that it is NP-complete to decide, given a graph $G$ and a vertex set $U$, if there exists a minimal connected dominating set $D$ with $U\subseteq D$, even if $G$ is known to be 2-degenerate. Our reduction also shows that even any subexponential delay is not easy to achieve for enumerating minimal connected dominating sets. Another reduction shows that no FPT-algorithms can be expected for this extension problem concerning minimal connected dominating sets, parameterized by $|U|$. We also relate our enumeration problem to the famous open Hitting Set Transversal problem, which can be phrased in our context as the question to enumerate all minimal dominating sets of a graph with polynomial delay by showing that a polynomial-delay enumeration algorithm for minimal connected dominating sets implies an affirmative algorithmic solution to the Hitting Set Transversal problem.


翻译:将所有包含- 最小链接的支配性设置都用多数值空间来计算。 此结果的关键在于在2- 淡化图形中考虑这个查点问题, 事实证明这在时间上是可能的 $\ mathcal{O} (1. 9896 ⁇ n) 。 在许多地方, 我们提出的一个尚未解决的问题 。 我们通过提供一个在时间上运行 $\ mathcal{O} (1. 9896 ⁇ n) 的查点算法, 将所有包含最小连接的自动数字组列出来解决这个问题。 我们还通过构建一个以 $$( 1. 48900.00) 美元为最小连接的编码来显示新的约束性结果 。 我们的算法无法转换成一个甚至以美元为最小连接的计算法 。 更确切地说, 我们的计算方法可以显示一个最小的 美元( 美元) 数字解析算法, 我们的解算方法可以显示一个最小化的内存 美元( ) 美元( 美元) ), 我们的内存的内存的内存 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月17日
Twin-width and types
Arxiv
0+阅读 · 2022年6月16日
Arxiv
0+阅读 · 2022年6月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员