Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) revamping road networks, (b) rerouting data packets in synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c) and (d) are restrictions to different graph classes. We show that (a) is intractable, even for relaxed variants of the problem. For (b), (c) and (d), we present efficient algorithms to solve the respective problems. We also generalize the problem to when at most $k$ (for a fixed integer $k\geq 2$) contiguous vertices on a shortest path can be changed at a time.
翻译:在图形中重新配置两个最短路径意味着通过一次改变一个顶点将一条最短路径修改到另一个最短路径,使所有中间路径也是最短路径。这个问题有几个自然应用,即:(a) 改造道路网络,(b) 在同步的多处理环境中改变数据包的路线,(c) 航运集装箱积载问题,以及(d) 火车拼接问题。当模拟成图形问题时,(a) 是最常见的情况,而(b)、(c) 和(d) 是对不同图表类别的限制。我们表明 (a) 是难以解决的,甚至对于问题的松散变量。(b)、(c) 和(d),我们提出了解决各自问题的高效算法。我们还将问题概括到一个最短路径上的美元(固定整数 $k\ geq 2 ) 的毗连脊可以一次改变。