A new hybrid Bayesian network learning algorithm, termed Forward Early Dropping Hill Climbing (FEDHC), devised to work with either continuous or categorical variables. FEDHC consists of a skeleton identification phase and a subsequent scoring phase that assigns the (causal) directions. Further, the paper manifests that the only implementation of MMHC in the statistical software \textit{R}, is prohibitively expensive and a new implementation is offered. In addition, specifically for the case of continuous data, a robust to outliers version of FEDHC, that can be adopted by other BN learning algorithms as well is proposed. The FEDHC is tested via Monte Carlo simulations that distinctly show it is computationally efficient, and produces Bayesian networks of similar to, or of higher accuracy than MMHC and PCHC. Specifically, FEDHC yields more accurate Bayesian networks than PCHC with continuous data but less accurate with categorical data. Finally, an application of FEDHC, PCHC and MMHC algorithms to real data, from the field of economics, is demonstrated using the statistical software \textit{R}.


翻译:此外,该文件还表明,统计软件\ textit{R}中只有执行MMHC才具有令人望而却步的成本,并且提供了一种新的实施方法。此外,具体地说,就连续数据而言,还提议采用FEDHC的强力外推法,其他BN的学习算法也可以采用FEDHC。FEDHC通过Monte Carlo模拟测试,明显显示它具有计算效率,并产生比MMHC和PCHC类似或更精准的Bayesian网络。具体地说,FEDHC的精确巴伊西亚网络比PCHC的连续数据更准确,但与绝对数据不那么精确。最后,使用统计软件演示了FEDHC、PCHC和MMHC的算法对来自经济领域的真实数据的应用。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
57+阅读 · 2021年5月3日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Learning to Importance Sample in Primary Sample Space
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
57+阅读 · 2021年5月3日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Learning to Importance Sample in Primary Sample Space
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
5+阅读 · 2018年4月22日
Top
微信扫码咨询专知VIP会员