To share the patient\textquoteright s data in the blockchain network can help to learn the accurate deep learning model for the better prediction of COVID-19 patients. However, privacy (e.g., data leakage) and security (e.g., reliability or trust of data) concerns are the main challenging task for the health care centers. To solve this challenging task, this article designs a privacy-preserving framework based on federated learning and blockchain. In the first step, we train the local model by using the capsule network for the segmentation and classification of the COVID-19 images. The segmentation aims to extract nodules and classification to train the model. In the second step, we secure the local model through the homomorphic encryption scheme. The designed scheme encrypts and decrypts the gradients for federated learning. Moreover, for the decentralization of the model, we design a blockchain-based federated learning algorithm that can aggregate the gradients and update the local model. In this way, the proposed encryption scheme achieves the data provider privacy, and blockchain guarantees the reliability of the shared data. The experiment results demonstrate the performance of the proposed scheme.
翻译:分享封闭链网络中的病人/文本配额数据有助于学习准确的深层次学习模型,以更好地预测COVID-19病人。然而,隐私(例如数据泄漏)和安全(例如数据的可靠性或信任性)问题是卫生保健中心面临的主要挑战任务。为了解决这一具有挑战性的任务,本文章设计了一个基于联合学习和封闭链的隐私保护框架。第一步,我们利用胶囊网络对本地模型进行培训,对COVID-19图像进行分解和分类。分解的目的是提取结核和分类,以培训模型。第二步,我们通过同质加密计划确保本地模型的安全。设计的计划加密并解密了联邦学习的梯度。此外,为了分散模型,我们设计了一个基于块链的混合学习算法,以汇总梯度和更新本地模型。在这方面,拟议的加密计划实现了数据提供者的隐私,并堵塞了共享数据的可靠性。实验结果展示了拟议的计划绩效。