To address the ever-growing connectivity demands of wireless communications, the adoption of ingenious solutions, such as Unmanned Aerial Vehicles (UAVs) as mobile Base Stations (BSs), is imperative. In general, the location of a UAV Base Station (UAV-BS) is determined by optimization algorithms, which have high computationally complexities and place heavy demands on UAV resources. In this paper, we show that a Convolutional Neural Network (CNN) model can be trained to infer the location of a UAV-BS in real time. In so doing, we create a framework to determine the UAV locations that considers the deployment of Mobile Users (MUs) to generate labels by using the data obtained from an optimization algorithm. Performance evaluations reveal that once the CNN model is trained with the given labels and locations of MUs, the proposed approach is capable of approximating the results given by the adopted optimization algorithm with high fidelity, outperforming Reinforcement Learning (RL)-based approaches. We also explore future research challenges and highlight key issues.
翻译:为了满足无线通信不断增长的连通性需求,必须采取创新的解决办法,如无人驾驶航空飞行器作为移动基地站(BS),一般来说,无人驾驶航空飞行器(UAV-BS)基地站的位置由优化算法决定,这种算法具有很高的计算复杂性,对UAV资源提出了大量要求。在本文中,我们表明,可培训一个革命神经网络模型,实时推断无人驾驶航空飞行器(UAV-BS)的位置。在这样做时,我们建立一个框架,确定无人驾驶航空飞行器的位置,考虑使用移动用户(MUs)使用从优化算法获得的数据生成标签。绩效评估显示,CNN模型一旦经过对特定标记和MUs位置的培训,拟议的方法就能够以高度忠诚、业绩优异的强化学习方法(RL)取得结果。我们还探索未来研究挑战并突出关键问题。