Image retrieval systems help users to browse and search among extensive images in real-time. With the rise of cloud computing, retrieval tasks are usually outsourced to cloud servers. However, the cloud scenario brings a daunting challenge of privacy protection as cloud servers cannot be fully trusted. To this end, image-encryption-based privacy-preserving image retrieval schemes have been developed, which first extract features from cipher-images, and then build retrieval models based on these features. Yet, most existing approaches extract shallow features and design trivial retrieval models, resulting in insufficient expressiveness for the cipher-images. In this paper, we propose a novel paradigm named Encrypted Vision Transformer (EViT), which advances the discriminative representations capability of cipher-images. First, in order to capture comprehensive ruled information, we extract multi-level local length sequence and global Huffman-code frequency features from the cipher-images which are encrypted by stream cipher during JPEG compression process. Second, we design the Vision Transformer-based retrieval model to couple with the multi-level features, and propose two adaptive data augmentation methods to improve representation power of the retrieval model. Our proposal can be easily adapted to unsupervised and supervised settings via self-supervised contrastive learning manner. Extensive experiments reveal that EViT achieves both excellent encryption and retrieval performance, outperforming current schemes in terms of retrieval accuracy by large margins while protecting image privacy effectively. Code is publicly available at \url{https://github.com/onlinehuazai/EViT}.


翻译:图像检索系统帮助用户实时浏览和搜索广泛的图像。 随着云计算的增加, 检索任务通常外包给云服务器。 但是, 云情景带来了保护隐私的艰巨挑战, 因为云服务器无法完全信任。 为此, 开发了基于图像加密的隐私保存图像检索计划, 首先从密码图像图像图像中提取功能, 然后根据这些功能建立检索模型。 然而, 多数现有方法提取浅色特性, 设计了微小的检索模型, 导致对密码图像模拟的表达性不够。 在本文件中, 我们提出了一个名为加密视野变换器( EViot) 的新模式, 用于提高加密图像服务器的歧视性表达能力。 首先, 为了获取全面的有规则的信息, 我们从加密图像中提取了多层次的本地序列和全球赫夫曼代码频率功能。 在 JPEG 压缩过程中, 我们设计基于视觉变换码的检索模型模型模型, 与多级图像变换码变换码变异模型( EViet) (EViveration Fevelrial Trev) (Ephyal realitional realitional realition) 等新模式结合,, 两种适应性数据变校正变校正的系统, 的校正校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 改进 校正 校正 校正 校正 校正 校正 校正 校正 校正 校 校正 校 校正 校正 校 校 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 方法 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正 校正

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
16+阅读 · 2021年1月27日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员