We study the compressibility of enumerations, and its role in the relative Kolmogorov complexity of computably enumerable sets, with respect to density. With respect to a strong and a weak form of compression, we examine the gain: the amount of auxiliary information embedded in the compressed enumeration. Strong compression and weak gainless compression is shown for any computably enumerable set, and a positional game is studied toward understanding strong gainless compression.
翻译:我们研究了枚举的压缩性及其在与密度相关的可计算枚举集合的相对 Kolmogorov 复杂度中的作用。在强压缩和弱压缩的情况下,我们研究了收益:压缩枚举中嵌入的辅助信息的数量。我们证明了任何可计算枚举集合都可以进行强压缩和弱的无收益压缩,并研究了一个位置博弈,以了解强无收益压缩的情况。