We propose a structure-preserving finite difference scheme for the Cahn-Hilliard equation with a dynamic boundary condition using the discrete variational derivative method (DVDM). In this approach, it is important and essential how to discretize the energy which characterizes the equation. By modifying the conventional manner and using an appropriate summation-by-parts formula, we can use a standard central difference operator as an approximation of an outward normal derivative on the discrete boundary condition of the scheme. We show that our proposed scheme is second-order accurate in space, although the previous structure-preserving scheme by Fukao-Yoshikawa-Wada (Commun. Pure Appl. Anal. 16 (2017), 1915-1938) is first-order accurate in space. Also, we show the stability, the existence, and the uniqueness of the solution for the proposed scheme. Computation examples demonstrate the effectiveness of the proposed scheme. Especially through computation examples, we confirm that numerical solutions can be stably obtained by our proposed scheme.
翻译:我们为Cahn-Hilliard 等式提出了一个结构保留有限差异方案,采用离散变异衍生物法(DVDM),具有动态边界条件。在这种方法中,分离该等式所特有的能量非常重要,而且至关重要。通过修改常规方式和采用适当的逐个总和公式,我们可以使用标准中央差异操作器,作为该等式的离散边界条件的外向正常衍生物的近似值。我们表明,我们提议的计划在空间是第二级准确的,尽管由Fukao-Yoshikawa-Wada(Common.Pure Appl. 16 (2017年)、1915-1938年) 先前的结构保留计划在空间是第一阶的准确性。我们还可以展示拟议方案的稳定、存在和解决办法的独特性。计算示例显示了拟议计划的有效性。我们通过计算实例确认,我们提议的计划可以精确地获得数字解决方案。