Cameras capture sensor RAW images and transform them into pleasant RGB images, suitable for the human eyes, using their integrated Image Signal Processor (ISP). Numerous low-level vision tasks operate in the RAW domain (e.g. image denoising, white balance) due to its linear relationship with the scene irradiance, wide-range of information at 12bits, and sensor designs. Despite this, RAW image datasets are scarce and more expensive to collect than the already large and public RGB datasets. This paper introduces the AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstruction. We aim to recover raw sensor images from the corresponding RGBs without metadata and, by doing this, "reverse" the ISP transformation. The proposed methods and benchmark establish the state-of-the-art for this low-level vision inverse problem, and generating realistic raw sensor readings can potentially benefit other tasks such as denoising and super-resolution.
翻译:相机捕捉传感器 RAW 图像并将其转换成适合人类眼睛的舒适 RGB 图像, 使用其集成图像信号处理器 (ISP) 。 许多低级的视觉任务在 RAW 域运行( 如图像除色、 白平衡 ), 原因是它与现场的线性辐射关系、 12 比特的广度信息以及传感器设计。 尽管如此, RAW 图像数据集比已经大而 公开的 RGB 数据集稀缺, 收集成本更高 。 本文介绍了 AIM 2022 关于 校正图像信号处理和 RAW 重建的挑战 。 我们的目标是在没有元数据的情况下从相应的 RGB 中回收原始传感器图像, 并通过这样做, “ 逆向” ISP 转换。 提议的方法和基准为这个低度的视图反向问题建立最新状态, 产生现实的原始传感器读数可能有益于其他任务, 如解析和超级解析等 。