We present in this paper a new architecture, the Pattern Attention Transformer (PAT), that is composed of the new doughnut kernel. Compared with tokens in the NLP field, Transformer in computer vision has the problem of handling the high resolution of pixels in images. In ViT, an image is cut into square-shaped patches. As the follow-up of ViT, Swin Transformer proposes an additional step of shifting to decrease the existence of fixed boundaries, which also incurs 'two connected Swin Transformer blocks' as the minimum unit of the model. Inheriting the patch/window idea, our doughnut kernel enhances the design of patches further. It replaces the line-cut boundaries with two types of areas: sensor and updating, which is based on the comprehension of self-attention (named QKVA grid). The doughnut kernel also brings a new topic about the shape of kernels beyond square. To verify its performance on image classification, PAT is designed with Transformer blocks of regular octagon shape doughnut kernels. Its architecture is lighter: the minimum pattern attention layer is only one for each stage. Under similar complexity of computation, its performances on ImageNet 1K reach higher throughput (+10%) and surpass Swin Transformer (+0.1 acc1).


翻译:本文提出了一种新的网络结构,即Pattern Attention Transformer(PAT),它是由新的多福糖球体卷积核构成的。与NLP领域中的标记相比,计算机视觉中的Transformer处理高分辨率像素图像的问题。在ViT中,将图像切成正方形的块。作为ViT的后续,Swin Transformer提出了一个附加步骤来减少固定边界的存在,这也产生了“两个连接的Swin变换器块”作为模型的最小单元。继承了补丁/窗口思想,我们的多福糖球体卷积核进一步增强了补丁的设计。它用传感器和更新两种区域替换了线切边界,这是基于自我关注(名为QKVA网格)的理解。多福糖球体卷积核还带来了关于卷积核形状的新话题,超越正方形形状的设计。为了验证其在图像分类方面的性能,PAT是由规则八边形形状的多福糖球体卷积核的Transformer块组成的。该架构更轻巧:每个阶段的最小pattern attention层仅为1。在类似的计算复杂性下,ImageNet 1K上的性能与Swin Transformer相比具有更高的吞吐量(+10%),并且超过了Swin Transformer(+0.1 acc1)。

0
下载
关闭预览

相关内容

【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
32+阅读 · 2022年3月18日
人大最新《基于Transformer 的视频语言预训练》综述论文
专知会员服务
45+阅读 · 2021年9月27日
【CVPR2021】用Transformers无监督预训练进行目标检测
专知会员服务
57+阅读 · 2021年3月3日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
33+阅读 · 2022年2月15日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Arxiv
0+阅读 · 2023年5月4日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
33+阅读 · 2022年2月15日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员