In this paper, we extend to the block case, the a posteriori bound showing superlinear convergence of Conjugate Gradients developed in [J. Comput. Applied Math., 48 (1993), pp. 327-341]; that is, we obtain similar bounds, but now for block Conjugate Gradients. We also present a series of computational experiments illustrating the validity of the bound developed here, as well as the bound from [SIAM Review, 47 (2005), pp. 247-272] using angles between subspaces. Using these bounds, we make some observations on the onset of superlinearity, and how this onset depends on the eigenvalue distribution and the block size.
翻译:在本文中,我们延伸至区块案例,即使用子空格之间的角度,事后捆绑显示Conjugate Gradients在[J. Comput. Application Math., 48 (1993), pp. 327-341]中形成的超线性趋同。也就是说,我们获得了相似的界限,但现在却得到了Conjugate Gradients区块的界限。我们还提出一系列计算实验,说明此处所开发的捆绑的有效性,以及[SIAM Review, 47 (2005), pp. 247-272]在子空格之间的界限。我们使用这些界限,对超线性开始、以及这一开始如何取决于电子价值分布和区块大小,提出一些观察意见。