Despite the state-of-the-art performance of Large Language Models (LLMs) achieved on many tasks, their massive scale often leads to high computational and environmental costs, limiting their accessibility. Parameter-efficient fine-tuning (PEFT) methods address this challenge by reducing the number of trainable parameters while maintaining strong downstream performance. Despite the increased development in PEFT methods, current evaluations remain limited (in terms of evaluated models and datasets) and difficult to reproduce. To bridge this gap, we introduce PEFT-Bench, a unified end-to-end benchmark for evaluating diverse PEFT methods on autoregressive LLMs. We demonstrate its usage across 27 NLP datasets and 6 PEFT methods. To account for different PEFT training and inference factors, we also introduce the PEFT Soft Score Penalties (PSCP) metric, which takes trainable parameters, inference speed, and training memory usage into account.


翻译:尽管大型语言模型(LLMs)在许多任务上取得了最先进的性能,但其庞大的规模往往导致高昂的计算和环境成本,限制了其可访问性。参数高效微调(PEFT)方法通过减少可训练参数的数量,同时保持强大的下游性能,来应对这一挑战。尽管PEFT方法的开发日益增多,但当前的评估仍然有限(在评估模型和数据集方面)且难以复现。为了弥合这一差距,我们引入了PEFT-Bench,这是一个用于在自回归LLMs上评估多种PEFT方法的统一端到端基准测试。我们展示了其在27个NLP数据集和6种PEFT方法上的应用。为了考虑不同的PEFT训练和推理因素,我们还引入了PEFT软分数惩罚(PSCP)指标,该指标考虑了可训练参数、推理速度和训练内存使用情况。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员