Dataset distillation (DD) compresses large datasets into smaller ones while preserving the performance of models trained on them. Although DD is often assumed to enhance data privacy by aggregating over individual examples, recent studies reveal that standard DD can still leak sensitive information from the original dataset due to the lack of formal privacy guarantees. Existing differentially private (DP)-DD methods attempt to mitigate this risk by injecting noise into the distillation process. However, they often fail to fully leverage the original dataset, resulting in degraded realism and utility. This paper introduces \libn, a novel framework that addresses the key limitations of current DP-DD by leveraging DP-generated data. Specifically, \lib initializes the distilled dataset with DP-generated data to enhance realism. Then, generated data refines the DP-feature matching technique to distill the original dataset under a small privacy budget, and trains an expert model to align the distilled examples with their class distribution. Furthermore, we design a privacy budget allocation strategy to determine budget consumption across DP components and provide a theoretical analysis of the overall privacy guarantees. Extensive experiments show that \lib significantly outperforms state-of-the-art DP-DD methods in terms of both dataset utility and robustness against membership inference attacks, establishing a new paradigm for privacy-preserving dataset distillation.


翻译:数据集蒸馏(DD)通过将大型数据集压缩为更小的数据集,同时保持在其上训练模型的性能。尽管DD通常被认为通过聚合个体样本来增强数据隐私,但最近的研究表明,由于缺乏形式化的隐私保证,标准DD仍可能泄露原始数据集中的敏感信息。现有的差分隐私(DP)-DD方法试图通过在蒸馏过程中注入噪声来缓解这一风险。然而,这些方法往往未能充分利用原始数据集,导致真实性和效用下降。本文提出了\\libn,一种新颖的框架,通过利用DP生成的数据来解决当前DP-DD的关键局限性。具体而言,\\lib使用DP生成的数据初始化蒸馏数据集以增强真实性。随后,生成数据优化了DP特征匹配技术,在较小的隐私预算下蒸馏原始数据集,并训练一个专家模型以使蒸馏样本与其类别分布对齐。此外,我们设计了一种隐私预算分配策略,以确定DP组件间的预算消耗,并对整体隐私保证进行了理论分析。大量实验表明,\\lib在数据集效用和对抗成员推理攻击的鲁棒性方面均显著优于最先进的DP-DD方法,为隐私保护的数据集蒸馏建立了新范式。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员