This paper introduces our solution, XM-ALIGN (Unified Cross-Modal Embedding Alignment Framework), proposed for the FAME challenge at ICASSP 2026. Our framework combines explicit and implicit alignment mechanisms, significantly improving cross-modal verification performance in both "heard" and "unheard" languages. By extracting feature embeddings from both face and voice encoders and jointly optimizing them using a shared classifier, we employ mean squared error (MSE) as the embedding alignment loss to ensure tight alignment between modalities. Additionally, data augmentation strategies are applied during model training to enhance generalization. Experimental results show that our approach demonstrates superior performance on the MAV-Celeb dataset. The code will be released at https://github.com/PunkMale/XM-ALIGN.


翻译:本文介绍了我们为ICASSP 2026 FAME挑战赛提出的解决方案——XM-ALIGN(统一跨模态嵌入对齐框架)。该框架结合了显式与隐式对齐机制,在“已听到”和“未听到”的语言场景下,显著提升了跨模态验证性能。通过从人脸编码器和语音编码器中提取特征嵌入,并利用共享分类器对其进行联合优化,我们采用均方误差(MSE)作为嵌入对齐损失,以确保不同模态间的紧密对齐。此外,在模型训练过程中应用了数据增强策略以提升泛化能力。实验结果表明,我们的方法在MAV-Celeb数据集上展现出优越的性能。代码将在 https://github.com/PunkMale/XM-ALIGN 发布。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员