Active inference, a theoretical construct inspired by brain processing, is a promising alternative to control artificial agents. However, current methods do not yet scale to high-dimensional inputs in continuous control. Here we present a novel active inference torque controller for industrial arms that maintains the adaptive characteristics of previous proprioceptive approaches but also enables large-scale multimodal integration (e.g., raw images). We extended our previous mathematical formulation by including multimodal state representation learning using a linearly coupled multimodal variational autoencoder. We evaluated our model on a simulated 7DOF Franka Emika Panda robot arm and compared its behavior with a previous active inference baseline and the Panda built-in optimized controller. Results showed improved tracking and control in goal-directed reaching due to the increased representation power, high robustness to noise and adaptability in changes on the environmental conditions and robot parameters without the need to relearn the generative models nor parameters retuning.
翻译:由大脑加工所启发的理论构造,即主动性推论,是控制人工剂的一个有希望的替代方法。然而,目前的方法尚未在连续控制中与高维投入相适应。这里我们展示了一个新的工业武器活性推论器控制器,它保持了先前自行感知方法的适应性,同时也能够实现大规模多式联运一体化(如原始图像)。我们扩大了我们以前的数学配方,将多式国家代表制学习纳入其中,使用了线性结合的多式联运变异自动编码。我们评估了模拟的7DOF Franka Emika Panda机器人臂模型,并将其行为与先前的主动推断基线和潘达制造的优化控制器进行了比较。结果显示,由于代表力的提高,噪音的高度稳健性和环境条件变化和机器人参数的适应性变化,目标导向的跟踪和控制得到了改进,而无需再读取基因模型或参数的调整。