Co-speech gestures, gestures that accompany speech, play an important role in human communication. Automatic co-speech gesture generation is thus a key enabling technology for embodied conversational agents (ECAs), since humans expect ECAs to be capable of multi-modal communication. Research into gesture generation is rapidly gravitating towards data-driven methods. Unfortunately, individual research efforts in the field are difficult to compare: there are no established benchmarks, and each study tends to use its own dataset, motion visualisation, and evaluation methodology. To address this situation, we launched the GENEA Challenge, a gesture-generation challenge wherein participating teams built automatic gesture-generation systems on a common dataset, and the resulting systems were evaluated in parallel in a large, crowdsourced user study using the same motion-rendering pipeline. Since differences in evaluation outcomes between systems now are solely attributable to differences between the motion-generation methods, this enables benchmarking recent approaches against one another in order to get a better impression of the state of the art in the field. This paper reports on the purpose, design, results, and implications of our challenge.


翻译:共同说话的手势、演讲的同时的手势、在人类交流中扮演重要角色。因此,自动共同说话的手势生成是一个关键技术,使具有内涵的对话剂(ECAs)成为关键的辅助技术,因为人类期望ECA能够实现多式通信。对手势生成的研究正在迅速转向数据驱动的方法。不幸的是,实地的个体研究工作很难比较:没有既定的基准,每项研究都倾向于使用自己的数据集、运动视觉化和评价方法。为了应对这种情况,我们发起了GENEA挑战,即一个手势生成挑战,即参与团队在共同数据集上建立自动手势生成系统,由此产生的系统在使用同一运动驱动管道的大型、众源用户研究中同时进行评估。由于目前各系统之间在评价结果上的差异完全归因于运动生成方法之间的差异,因此能够将最新方法作为基准,以便更好地了解实地的艺术状况。这份关于我们挑战的目的、设计、结果和影响的报告。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
多轮对话之对话管理:Dialog Management
PaperWeekly
18+阅读 · 2018年1月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
多轮对话之对话管理:Dialog Management
PaperWeekly
18+阅读 · 2018年1月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员