Automatic medical image segmentation based on Computed Tomography (CT) has been widely applied for computer-aided surgery as a prerequisite. With the development of deep learning technologies, deep convolutional neural networks (DCNNs) have shown robust performance in automated semantic segmentation of medical images. However, semantic segmentation algorithms based on DCNNs still meet the challenges of feature loss between encoder and decoder, multi-scale object, restricted field of view of filters, and lack of medical image data. This paper proposes a novel algorithm for automated vertebrae segmentation via 3D volumetric spine CT images. The proposed model is based on the structure of encoder to decoder, using layer normalization to optimize mini-batch training performance. To address the concern of the information loss between encoder and decoder, we designed an Atrous Residual Path to pass more features from encoder to decoder instead of an easy shortcut connection. The proposed model also applied the attention module in the decoder part to extract features from variant scales. The proposed model is evaluated on a publicly available dataset by a variety of metrics. The experimental results show that our model achieves competitive performance compared with other state-of-the-art medical semantic segmentation methods.
翻译:在计算机辅助外科手术中,广泛应用基于剖析成像(CT)的自动医学图象分割法,作为先决条件。随着深层学习技术的发展,深相神经网络(DCNNN)在医学图象的自动解析分解中表现出很强的性能。然而,基于DCNN的语义分割算法仍然能应对编码器和解码器之间特征损失的挑战,多尺度物体、过滤器观察受限领域和缺乏医学图象数据。本文件还提出了通过3D体体积脊椎成像自动分解的新算法。提议的模型以编码器到解码器的结构为基础,使用分解器优化微型分解培训性能。为解决对编码器和解码器之间信息损失的关切,我们设计了一种Atrogy残余路径,将更多的特征从编码器到解码器,而不是简单的捷径连接。拟议模型还采用了分解分解器部分的注意模块,从变异形的尺寸缩图案。拟议模型以编码结构为基础,以解解解码器结构为基础,使用分解解码器结构结构,使用分解模型,使用分解模型,利用分层结构,优化的模型,用可公开的模型,以测试的方法显示其他的医学方法。