3D neuron segmentation is a key step for the neuron digital reconstruction, which is essential for exploring brain circuits and understanding brain functions. However, the fine line-shaped nerve fibers of neuron could spread in a large region, which brings great computational cost to the segmentation in 3D neuronal images. Meanwhile, the strong noises and disconnected nerve fibers in the image bring great challenges to the task. In this paper, we propose a 3D wavelet and deep learning based 3D neuron segmentation method. The neuronal image is first partitioned into neuronal cubes to simplify the segmentation task. Then, we design 3D WaveUNet, the first 3D wavelet integrated encoder-decoder network, to segment the nerve fibers in the cubes; the wavelets could assist the deep networks in suppressing data noise and connecting the broken fibers. We also produce a Neuronal Cube Dataset (NeuCuDa) using the biggest available annotated neuronal image dataset, BigNeuron, to train 3D WaveUNet. Finally, the nerve fibers segmented in cubes are assembled to generate the complete neuron, which is digitally reconstructed using an available automatic tracing algorithm. The experimental results show that our neuron segmentation method could completely extract the target neuron in noisy neuronal images. The integrated 3D wavelets can efficiently improve the performance of 3D neuron segmentation and reconstruction. The code and pre-trained models for this work will be available at https://github.com/LiQiufu/3D-WaveUNet.


翻译:3D 神经断裂是神经数字重建的关键步骤, 它对于探索大脑电路和理解大脑功能至关重要。 然而, 神经元精细线状神经纤维可以在大区域扩散, 给3D神经图象的分解带来巨大的计算成本。 同时, 图像中的强烈噪音和断开神经纤维会给任务带来巨大的挑战 。 在本文中, 我们提出一个基于 3D 神经分解的 3D 波盘和深学习 3D 神经分解方法 。 神经元图像首先被分割到神经元立方体中以简化分解任务。 然后, 我们设计了 3D WaveUNet, 第一个 3D 神经元成形神经元综合解析器网络, 以分割立立立立体中神经元的神经元分解器 。 我们还可以用最大的附加的神经元集成图解数据元数据集, 大Neuron, 来训练 3D WaveUNet 。 最后, 神经纤维分解器中的第一个神经分解器将用来对立式的神经分解图解。, 将用来进行自动解算法的解,,, 将用来对神经分解算法的解。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2021年7月7日
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
93+阅读 · 2021年7月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
一文带你读懂 SegNet(语义分割)
AI研习社
19+阅读 · 2019年3月9日
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
极市平台
7+阅读 · 2019年1月31日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【紫冬报告】吴毅红研究员:2017以来的2D到3D
中国科学院自动化研究所
11+阅读 · 2018年5月8日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关VIP内容
专知会员服务
35+阅读 · 2021年7月7日
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
93+阅读 · 2021年7月2日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
一文带你读懂 SegNet(语义分割)
AI研习社
19+阅读 · 2019年3月9日
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
极市平台
7+阅读 · 2019年1月31日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【紫冬报告】吴毅红研究员:2017以来的2D到3D
中国科学院自动化研究所
11+阅读 · 2018年5月8日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员