The exponential function maps the imaginary axis to the unit circle and, for many applications, this unitarity property is also desirable from its approximations. We show that this property is conserved not only by the (k,k)-rational barycentric interpolant of the exponential on the imaginary axis, but also by (k,k)-rational barycentric approximants that minimize a linearized approximation error. These results are a consequence of certain properties of singular vectors of Loewner-type matrices associated to linearized approximation errors. Prominent representatives of this class are rational approximants computed by the adaptive Antoulas--Anderson (AAA) method and the AAA--Lawson method. Our results also lead to a modified procedure with improved numerical stability of the unitarity property and reduced computational cost.
翻译:指数函数映射单位圆的想象轴, 对于许多应用来说, 这个单位属性也从其近似值中是可取的。 我们显示, 这个属性不仅通过( k, k) 逻辑的( k) 条形的( rat) 条形的( rat) 条形的( k) 条形的( k) 条形的( k) 条形的( ) 线性( ) 线性近似误差, 并且通过( k, k) 逻辑的( k) 条形的( ration) 条形的( roral) 条形的( barycent) 方形的( rence) 方形的( rational) 方形( k, k) 方形的( k) 条形的( rus- rawson ) 方形的( ) 方形的( ) 方形的( ) 方形的( ) 方形( ) 方形的( ) ) 方形的( ) 方形( ) 方形( ) 方形( ) 方形( ) 方形( ) ) 方形( 方形( ) ) ) ) 方形( ) ) 方形( 方形( ) ) 方( ) 方( 方( ) ) 方( ) 方形( 方形( ) ) 方( 方( ) 方( ) ) ) 方( 方( ) ) ) 方( ) 方( ) ) 方( ) ) ) ) 方( ) 方( 方( ) 方( ) 方( 方( ) 方( 方( 方( 方( 方( ) ) ) ) ) 方( ) ) ) 方( ) ) 方( 方( ) 方( 方( 方( ) 方( 方( 方( 方( )