The commercialization of deep learning creates a compelling need for intellectual property (IP) protection. Deep neural network (DNN) watermarking has been proposed as a promising tool to help model owners prove ownership and fight piracy. A popular approach of watermarking is to train a DNN to recognize images with certain \textit{trigger} patterns. In this paper, we propose a novel evolutionary algorithm-based method to generate and optimize trigger patterns. Our method brings a siginificant reduction in false positive rates, leading to compelling proof of ownership. At the same time, it maintains the robustness of the watermark against attacks. We compare our method with the prior art and demonstrate its effectiveness on popular models and datasets.


翻译:深层学习的商业化产生了对知识产权保护的迫切需求。深神经网络(DNN)的水标识被提议为帮助模型拥有者证明所有权和打击盗版行为的一个很有希望的工具。一种流行的水标识方法是培训DNN,以某些textit{trigger}模式识别图像。在本文中,我们提出了一种新的基于进化算法的生成和优化触发模式的新方法。我们的方法导致假正率的大幅下降,导致令人信服的所有权证明。与此同时,它保持水标识的稳健性,以抵御袭击。我们将我们的方法与以前的艺术进行比较,并展示其在流行模型和数据集上的有效性。

0
下载
关闭预览

相关内容

专知会员服务
99+阅读 · 2020年12月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员