Software language models have achieved promising results predicting code completion usages, and several industry studies have described successful IDE integrations. Recently, accuracy in autocompletion prediction improved 12.8% from training on a real-world dataset collected from programmers' IDE activity. But what if limited examples of IDE autocompletion in the target programming language are available for model training? In this paper, we investigate the efficacy of pretraining autocompletion models on non-IDE, non-autocompletion, and different-language example code sequences. We find that these unsupervised pretrainings improve model accuracy by over 50% on very small fine-tuning datasets and over 10% on 50k labeled examples. We confirm the real-world impact of these pretrainings in an online setting through A/B testing on thousands of IDE autocompletion users, finding that pretraining is responsible for increases of up to 6.63% autocompletion usage.


翻译:软件语言模型在预测代码完成使用方面已经取得了可喜的成果,一些行业研究描述了成功的 IDE 集成。 最近, 自动完成预测的准确性从从从程序员的 IDE 活动中收集的真实世界数据集培训中提高了12.8%。 但是, 如果为模型培训提供了目标编程语言的IDE自动完成的有限例子呢? 在本文中,我们调查了非IDE、非自动完成和不同语言示例代码序列的预培训自动完成模型的功效。 我们发现,这些未经监督的预培训使非常小的微调数据集模型的准确性提高了50%以上,在50公里标签示例中提高了10%以上。 我们确认,通过A/B测试数千个IDE自动完成用户,这些预培训在网上设置中产生了真实世界的影响,发现预培训导致高达6.63%的自动完成使用率增加。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
14+阅读 · 2019年9月11日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年9月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
18+阅读 · 2021年3月16日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
14+阅读 · 2019年9月11日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年9月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Top
微信扫码咨询专知VIP会员