Motivated by A/B/n testing applications, we consider a finite set of distributions (called \emph{arms}), one of which is treated as a \emph{control}. We assume that the population is stratified into homogeneous subpopulations. At every time step, a subpopulation is sampled and an arm is chosen: the resulting observation is an independent draw from the arm conditioned on the subpopulation. The quality of each arm is assessed through a weighted combination of its subpopulation means. We propose a strategy for sequentially choosing one arm per time step so as to discover as fast as possible which arms, if any, have higher weighted expectation than the control. This strategy is shown to be asymptotically optimal in the following sense: if $\tau_\delta$ is the first time when the strategy ensures that it is able to output the correct answer with probability at least $1-\delta$, then $\mathbb{E}[\tau_\delta]$ grows linearly with $\log(1/\delta)$ at the exact optimal rate. This rate is identified in the paper in three different settings: (1) when the experimenter does not observe the subpopulation information, (2) when the subpopulation of each sample is observed but not chosen, and (3) when the experimenter can select the subpopulation from which each response is sampled. We illustrate the efficiency of the proposed strategy with numerical simulations on synthetic and real data collected from an A/B/n experiment.
翻译:在 A/B/n 测试应用程序的驱动下, 我们考虑一套有限的分布集( 称为 emph{ arms} ), 其中之一被视为 emph{ 控制} 。 我们假设人口被分解成同质子人口。 每一步, 都会对一个亚人口进行抽样, 并选择一个手臂: 结果的观察是独立地从小人口所在的手臂中提取的。 每个手臂的质量是通过其子人口单位的加权组合来评估的。 我们提出一个战略, 以便按顺序选择每步一个手臂, 以便尽可能快地发现哪个手臂( 如果有的话) 具有比控制更高的加权期望值 。 我们假设的是, 这个战略在以下意义下, 显示人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组人口组