Perceptual ad-blocking is a novel approach that detects online advertisements based on their visual content. Compared to traditional filter lists, the use of perceptual signals is believed to be less prone to an arms race with web publishers and ad networks. We demonstrate that this may not be the case. We describe attacks on multiple perceptual ad-blocking techniques, and unveil a new arms race that likely disfavors ad-blockers. Unexpectedly, perceptual ad-blocking can also introduce new vulnerabilities that let an attacker bypass web security boundaries and mount DDoS attacks. We first analyze the design space of perceptual ad-blockers and present a unified architecture that incorporates prior academic and commercial work. We then explore a variety of attacks on the ad-blocker's detection pipeline, that enable publishers or ad networks to evade or detect ad-blocking, and at times even abuse its high privilege level to bypass web security boundaries. On one hand, we show that perceptual ad-blocking must visually classify rendered web content to escape an arms race centered on obfuscation of page markup. On the other, we present a concrete set of attacks on visual ad-blockers by constructing adversarial examples in a real web page context. For seven ad-detectors, we create perturbed ads, ad-disclosure logos, and native web content that misleads perceptual ad-blocking with 100% success rates. In one of our attacks, we demonstrate how a malicious user can upload adversarial content, such as a perturbed image in a Facebook post, that fools the ad-blocker into removing another users' non-ad content. Moving beyond the Web and visual domain, we also build adversarial examples for AdblockRadio, an open source radio client that uses machine learning to detects ads in raw audio streams.


翻译:感知性阻塞是一种新颖的方法,它根据视觉内容检测在线广告。 与传统的过滤清单相比, 感知性信号的使用被认为不太容易与网络出版商和广告网络进行军备竞赛。 我们证明情况可能并非如此。 我们描述对多种感知性阻塞技术的攻击, 并揭开一种可能不利于阻塞者的新军备竞赛。 意外地, 感知性阻塞还可能带来新的弱点, 让攻击者绕过网络安全边界, 并登上DDoS攻击。 我们首先分析视觉性阻塞器的设计空间, 并展示一个包含先前学术和商业工作的统一架构。 我们随后探索了对阻塞者检测管道的多种攻击, 使出版者或广告网络能够躲避或探测阻塞, 有时甚至滥用其高度特权水平绕过网络安全边界。 一方面, 感知性阻塞性阻塞性能让网络内容摆脱了在读取感性广告内容上的激烈竞争, 并且我们用真实的纸质性标本进行网络攻击。 在另一处, 我们用视觉性平面的图像上, 设置了一种真实的硬拷贝性攻击。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
4+阅读 · 2018年4月30日
Top
微信扫码咨询专知VIP会员