This work establishes fast rates of convergence for empirical barycenters over a large class of geodesic spaces with curvature bounds in the sense of Alexandrov. More specifically, we show that parametric rates of convergence are achievable under natural conditions that characterize the bi-extendibility of geodesics emanating from a barycenter. These results largely advance the state-of-the-art on the subject both in terms of rates of convergence and the variety of spaces covered. In particular, our results apply to infinite-dimensional spaces such as the 2-Wasserstein space, where bi-extendibility of geodesics translates into regularity of Kantorovich potentials.
翻译:这项工作为大量具有亚历山多夫意义上的曲线界限的大地测量空间的实证中枢建立了快速的趋同率。更具体地说,我们表明,在自然条件下,从一个采采中心产生的大地测量的双延伸性具有特征,在自然条件下,可实现参数趋同率。这些结果在趋同率和所覆盖空间的种类方面都大大推进了这方面的最新技术。特别是,我们的结果适用于无限空间,如2-Wasserstein空间,其中大地测量的双延伸性转化为康托罗维奇潜力的规律性。