The spectral theory for weakly stationary processes valued in a separable Hilbert space has known renewed interest in the past decade. However, the recent literature on this topic is often based on restrictive assumptions or lacks important insights. In this paper, we follow earlier approaches which fully exploit the normal Hilbert module property of the space of Hilbert-valued random variables. This approach clarifies and completes the isomorphic relationship between the modular spectral domain to the modular time domain provided by the Gramian-Cram\'er representation. We also discuss the general Bochner theorem and provide useful results on the composition and inversion of lag-invariant linear filters. Finally, we derive the Cram\'er-Karhunen-Lo\`eve decomposition and harmonic functional principal component analysis without relying on simplifying assumptions.


翻译:以可分离的Hilbert空间中价值微弱的固定过程的光谱理论在过去十年中再次引起人们的兴趣,然而,最近关于这一专题的文献往往基于限制性的假设或缺乏重要的洞察力。在本文中,我们遵循了早期的做法,充分利用了Hilbert估价的随机变数空间正常的Hilbert模块属性。这种方法澄清并完成了模块光谱域与格拉姆-Cram\er代表提供的模块时间域之间的无定型关系。我们还讨论了Bochner理论,为低位不动线过滤器的构成和反向提供了有益的结果。最后,我们在不依赖简化假设的情况下得出Cram\'er-Karhunen-Lo ⁇ éeve的分解和相容功能主元分析。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月2日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
6+阅读 · 2019年11月14日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员